
Chapter 22. Lambda
Expressions and LINQ

In This Chapter

In this chapter we will become acquainted with some of the advanced

capabilities of the C# language. To be more specific, we will pay attention on

how to make queries to collections, using lambda expressions and LINQ,

and how to add functionality to already created classes, using extension

methods. We will get to know the anonymous types, describe their usage

briefly and discuss lambda expressions and show in practice how most of the

built-in lambda functions work. Afterwards, we will pay more attention to

the LINQ syntax – we will learn what it is, how it works and what queries we

can build with it. In the end, we will get to know the meaning of the

keywords in LINQ, and demonstrate their capabilities with lots of examples.

Extension Methods

In practice, programmers often have to add new functionality to already

existing code. If the code is available, we can simply add the required

functionality and recompile. When a given assembly (.exe or .dll file) has

already been compiled, and the source code is not available, a common way

to extend the functionality of the types is trough inheritance. This approach

can be quite difficult to apply, due to the fact that we will have to change the

instances of the base class with the instances of the derived one to be able to

use our new functionality. Unfortunately, that is the least of our problems. If

the type we want to inherit is marked with the keyword sealed, inheritance is

not possible.

Extension methods solve that very same problem – they present to us the

opportunity to add new functionality to already existing type (class or

interface), without having to change its original code or use inheritance, i.e.

also works fine with types that cannot be inherited. Notice that trough

extension methods we can add “implemented methods” even to interfaces.

The extension methods are defined as static in ordinary static classes.

The type of their first argument is the class (or the interface) they extend. In

front of it, we should place the keyword this. That is what makes them

different from other static methods, and indicates the compiler that this is an

extension method. The parameter with the keyword this in front of it can be

used in the method body to create its functionality. Practically, it is the object

that is used by the extension method.

916 Fundamentals of Computer Programming with C#

Extension methods can be applied directly to objects of the class/interface

they extend. They can also be invoked statically through the static class they

are defined in, but it is not a good practice.

To refer to a specific extension method, we should add

“using” and the corresponding namespace, where the static
class, describing this method, is defined. Otherwise the

compiler has no way of knowing about their existence.

Extension Methods – Examples

Let’s take for example the definition of an extension method that counts

the number of words in a given string. Have in mind, that the type string is

sealed, so it cannot be inherited.

public static class StringExtensions
{
 public static int WordCount(this string str)

 {
 return str.Split(new char[] { ' ', '.', '?', '!' },
 StringSplitOptions.RemoveEmptyEntries).Length;

 }
}

The method WordCountſ…ƀ extends the class String. This is indicated by the

keyword this before the type and the name of the first argument of the

method (in our case str). The method itself is static and it is defined in the

static class StringExtensions. The usage of the extension method is done

the same way as all the other methods of the class String. Do not forget to

add the corresponding namespace, where the static class, describing the

extension methods, is defined. Example of using an extension method:

static void Main()
{

 string helloString = "Hello, Extension Methods!";
 int wordCount = helloString.WordCount();
 Console.WriteLine(wordCount);

}

The method is invoked on the object helloString, which is of type string. It

also takes the object as an argument and works with it (in our case refers to

its Splitſ…ƀ method and returns the number of elements of the array,

produced by the Splitſ…ƀ method).

Chapter 22. Lambda Expressions and LINQ 917

Extension Methods for Interfaces

Extension methods can not only be used on classes, but on interfaces as well.

Our next example takes an instance of a class, that implements the interface

list of integers (IList<int>), and increases their value by a certain number.

The method IncreaseWithſ…ƀ can access only those elements that are

included in the interface IList (e.g. the property Count).

public static class IListExtensions
{
 public static void IncreaseWith(

 this IList<int> list, int amount)

 {
 for (int i = 0; i < list.Count; i++)

 {
 list[i] += amount;
 }

 }
}

The extension methods also give us the opportunity to work on generic types.

Let’s take for example a method that loops trough a collection, using

foreach, implementing IEnumerable from generic type T. Its purpose is to

convert to a meaningful string a sequence of elements (e.g. a list of integers):

public static class IEnumerableExtensions
{

 public static string ToString<T>(
 this IEnumerable<T> enumeration)
 {

 StringBuilder result = new StringBuilder();
 result.Append("[");

 foreach (var item in enumeration)

 {
 result.Append(item.ToString());
 result.Append(", ");

 }

 if (result.Length > 1)
 result.Remove(result.Length - 2, 2);

 result.Append("]");
 return result.ToString();

 }

}

Example of how to use the two extension methods declared above:

918 Fundamentals of Computer Programming with C#

static void Main()
{
 List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };

 Console.WriteLine(numbers.ToString<int>());
 numbers.IncreaseWith(5);
 Console.WriteLine(numbers.ToString<int>());

}

The output of the execution of the program will be the following:

[1, 2, 3, 4, 5]

[6, 7, 8, 9, 10]

Anonymous Types

In object-oriented languages (such as C#), it is common to define small

classes that will be used only once. Typical example is the class Point that

has only two fields – the coordinates of a point. Creating a simple class with

the idea of using it just once is inconvenient and time consuming for the

programmer, especially when the standard operations for each class:

ToString(), Equals() and GetHashCode() have to be predefined.

In C# there is a built-in way to create single-use types, called anonymous

types. Objects of such type are created almost the same way as other

objects in C#. The thing with them is that we don’t need to define data type

for the variable in advance. The keyword var indicates to the compiler that

the type of the variable will be automatically detected by the expression, after

the equals sign. We actually don’t have a choice here, since we can’t tell the

specific type of the variable, because it is defined as one of an anonymous

type. After that, we specify name for the object, followed by the "=" operator

and the keyword new. In curly braces we enumerate the names and the

values of the properties of the anonymous type.

Anonymous Types – Example

Here is an example of creating an anonymous type that describes a car:

var myCar = new { Color = "Red", Brand = "BMW", Speed = 180 };

During compilation, the compiler will create a class with a unique name

(something like <>f__AnonymousType0) and will generate properties for it

(with getter and setter). In the example above, the compiler will guess by its

own, that the properties Color and Brand are of type string and Speed will

be set as int. Right after the initialization, the object of the anonymous type

can be used as one of an ordinary type with its three properties:

Chapter 22. Lambda Expressions and LINQ 919

Console.WriteLine("My car is a {0} {1}.",
 myCar.Color, myCar.Brand);
Console.WriteLine("It runs {0} km/h.", myCar.Speed);

The output of the code above will be as follows:

My car is a Red BMW.

It runs 180 km/h.

More about Anonymous Types

As any other type in .NET, the anonymous ones inherit the class System.
Object. During compilation, the compiler will automatically redefine the

methods ToString(), Equals() and GetHashCode() for us.

Console.WriteLine("ToString: {0}", myCar.ToString());

Console.WriteLine("Hash code: {0}",
 myCar.GetHashCode().ToString());
Console.WriteLine("Equals? {0}", myCar.Equals(

 new { Color = "Red", Brand = "BMW", Speed = 180 }
));
Console.WriteLine("Type name: {0}", myCar.GetType().ToString());

The output of the code above will be the following:

ToString: { Color = Red, Brand = BMW, Speed = 180 }

Hash code: 1572002086
Equals? True
Type name:

<>f__AnonymousType0`3[System.String,System.String,System.Int32]

As we can see from the result, the method ToString() is redefined, so that

it can list the properties of the anonymous type in the order of their definition

in the initialization of the object (in our case myCar). The method

GetHashCode() is wrote in such a way, that it uses all fields and on their

basis it calculates a hash function with a small number of collisions. The

redefined by the compiler method Equalsſ…ƀ compares the objects field by

field. As we can notice from the example, we have created a new object that

has exactly the same properties as myCar, and returns a result stating that

the newly created object and the old one have equal values.

Arrays of Anonymous Types

The anonymous types, like ordinary ones, can be used as elements of

arrays. We can initialize them with the keyword new, followed by square

brackets. The values of the elements of the array are listed the same way, as

920 Fundamentals of Computer Programming with C#

the values assigned to the anonymous types. The values in the array should

be homogeneous, i.e. it is not possible to have different anonymous types in

the same array. An example of defining an array of anonymous types with

two properties (X and Y):

var arr = new[] {
 new { X = 3, Y = 5 },
 new { X = 1, Y = 2 },

 new { X = 0, Y = 7 }
};
foreach (var item in arr)

{
 Console.WriteLine(item.ToString());
}

The result of the execution of the code above will be the following:

{ X = 3, Y = 5 }
{ X = 1, Y = 2 }
{ X = 0, Y = 7 }

Lambda Expressions

Lambda expressions are anonymous functions that contain expressions

or sequence of operators. All lambda expressions use the lambda operator =>,

which can be read as “goes to”. The idea of the lambda expressions in C# is
borrowed from the functional programming languages (e.g. Haskell, Lisp,

Scheme, F# and others). The left side of the lambda operator specifies the

input parameters and the right side holds an expression or a code block

that works with the entry parameters and conceivably returns some result.

Usually lambda expressions are used as predicates or instead of delegates

(a type that references a method instance), which can be applied on

collections, processing their elements and/or returning a certain result.

Lambda Expressions – Examples

As an example, let’s take the extension method FindAllſ…ƀ, which can be

used to filter the necessary elements. It works on a certain collection by

applying a given predicate on it that checks if an element matches a certain

requirement. In order to use it we have to add a reference to the assembly

System.Core.dll (if it is not already added) and include the namespace

System.Linq, because the extension methods for the collections are there.

For example, if we want to take only the even numbers from a collection of

integers, we can use the method FindAllſ…ƀ on that collection, passing a

lambda method to it that checks if a certain number is even:

Chapter 22. Lambda Expressions and LINQ 921

List<int> list = new List<int>() { 1, 2, 3, 4, 5, 6 };
List<int> evenNumbers = list.FindAll(x => (x % 2) == 0);

foreach (var num in evenNumbers)

{
 Console.Write("{0} ", num);
}

Console.WriteLine();

The result is:

2 4 6

The example above loops through the whole collection of numbers and for

each element (named x) a check, if the number is multiple of 2, is made

(through the Boolean expression (x % 2) == 0).

Let’s now focus on an example in which trough an extension method and a

lambda expression we will create a collection, containing data from a

certain class. In the example, from the class Dog (with properties Name and

Age), we want to get a list that contains all dogs’ names. We can do that with
the extension method Selectſ…ƀ (defined in the namespace System.Linq)

by assigning to it to turn each dog (x) into dog’s name (x.Name) and writing

that result in the variable names. With the keyword var, we tell the compiler

to define the type of the variable according to the result that we assign on the

right side of the equals sign.

class Dog

{
 public string Name { get; set; }
 public int Age { get; set; }

}

static void Main()

{
 List<Dog> dogs = new List<Dog>() {
 new Dog { Name = "Rex", Age = 4 },

 new Dog { Name = "Sean", Age = 0 },
 new Dog { Name = "Stacy", Age = 3 }
 };

 var names = dogs.Select(x => x.Name);
 foreach (var name in names)

 {

 Console.WriteLine(name);
 }

922 Fundamentals of Computer Programming with C#

}

The result is:

Rex
Sean
Stacy

Using Lambda Expressions with Anonymous Types

We can create collections of anonymous types from a collection with some

elements by using lambda expressions. Let’s take the collection dogs,

containing elements of type Dog, and create new collection consisting of

elements of an anonymous type, having two properties – age and the initial

letter of the dog’s name:

var newDogsList = dogs.Select(

 x => new { Age = x.Age, FirstLetter = x.Name[0] });
foreach (var item in newDogsList)
{

 Console.WriteLine(item);
}

The result is:

{ Age = 4, FirstLetter = R }
{ Age = 0, FirstLetter = S }

{ Age = 3, FirstLetter = S }

As it is obvious from the example above, the newly created collection

newDogsList has elements of an anonymous type, taking the properties Age

and FirstLetter as parameters. The first line of the example can be read as

follows: "Create a variable of undefined (at this point) type, name it

newDogsList and create a new element of an anonymous type for each

element x of the dogs collection with two properties: Age that is equal to the

property Age of the element x, and the property FirstLetter that is equal to

the first character of the string x.Name".

Sorting with Lambda Expressions

If we want to sort the elements in a certain collection, we can use the

extension methods OrderByſ…ƀ and OrderByDescendingſ…ƀ, by defining the

way of sorting in a lambda function. An example on our collection dogs:

var sortedDogs = dogs.OrderByDescending(x => x.Age);

Chapter 22. Lambda Expressions and LINQ 923

foreach (var dog in sortedDogs)
{
 Console.WriteLine(string.Format(

 "Dog {0} is {1} years old.", dog.Name, dog.Age));
}

The result is:

Dog Rex is 4 years old.
Dog Stacy is 3 years old.

Dog Sean is 0 years old.

Statements in Lambda Expressions

Lambda functions can also have a body. So far we have used lambda

functions with only one statement. Now we will pay more attention to lambda

functions that have a body. Let’s return to the example with the even

numbers. Suppose we want to print to the console the values of all numbers,

to which our lambda function is applied to and to return the result if they are

even or not. We can do it the following way:

List<int> list = new List<int>() { 20, 1, 4, 8, 9, 44 };
// Process each argument with code statements

var evenNumbers = list.FindAll((i) =>
{
 Console.WriteLine("Value of i is: {0}", i);

 return (i % 2) == 0;
});

The result from the above code is:

Value of i is: 20

Value of i is: 1

Value of i is: 4
Value of i is: 8
Value of i is: 9

Value of i is: 44

Lambda Expressions as Delegates

Lambda functions can be written in delegates. Delegates are such a type of

variables that contains functions (methods). Some standard delegate types in

.NET are: Action, Action<in T>, Action<in T1, in T2>, and so on and

Func<out TResult>, Func<in T, out TResult>, Func<in T1, in T2,
out TResult> and so on. The types Func and Action are generic and

924 Fundamentals of Computer Programming with C#

contain the types of the return value, and the types of the parameters of the

functions. The variables of such types are references to functions. Below is an

example for using and assigning values to these types:

Func<bool> boolFunc = () => true;

Func<int, bool> intFunc = (x) => x < 10;
if (boolFunc() && intFunc(5))
{

 Console.WriteLine("5 < 10");
}

The result is:

5 < 10

In the example above we define two delegates. The first one – boolFunc is

a function that has no input parameters and returns a Boolean result. We

have given an anonymous lambda function that does nothing and always

returns true as a value to that function. The second delegate intFunc takes

as an argument an int variable and returns a Boolean value – true when x is

less than ten, and false otherwise. At the end, in the if statement, we call

these two delegates as we give to the second one value of 5 as an argument,

and the result from their invocation is true, as we can see.

LINQ Queries

LINQ (Language-Integrated Query) is a set of extensions of the .NET

Framework, that includes language integrated queries and operations on the

elements of a certain data source (most often arrays or collections). LINQ is

a very powerful tool, similar to most SQL languages by logic and syntax. It

actually works with collections in the same way as SQL languages work with

table rows in databases. It is part of the syntax of C# and Visual Basic .NET

and consists of few special keywords like from, in and select. In order to

use LINQ queries in C#, we have to include a reference to System.Core.dll
and to include the namespace System.Linq in the beginning of the C#

program.

Data Sources with LINQ

To define the data source (collection, array and so on), we have to use the

keywords from and in and a variable for the iteration of the collection (the

iteration is similar to the one with the foreach operator). For example, a

query that starts like this:

from culture
in CultureInfo.GetCultures(CultureTypes.AllCultures)

Chapter 22. Lambda Expressions and LINQ 925

can be read as follows: "for each element of the collection CultureInfo.

GetCultures(CultureTypes.AllCultures) assign the variable culture and

use it to refer to these items further in the query".

Data Filtering with LINQ

The keyword where can be used to set conditions, that should be kept by each

item of the collection, in order to continue with the execution of the query.

The expression after where is always of a Boolean type. We can say that

where works as a filter for the elements. For example, if we want to see

only those cultures, whose name begins with the lowercase Latin letter b, we

can continue the query from our last example like this:

where culture.Name.StartsWith("b")

As we can notice, after where … in, we use only the name we gave for the

iteration of the variables in the collection. The keyword where is compiled up

to the invoking of the extension method Where().

where culture.Name.StartsWith("b")

Results of LINQ Queries

To choose the output data for the query, we can use the keyword

select. The result is an object of an existing class or an anonymous type.

The result can also be a property of the objects, the query runs through or the

objects themselves. The select statement and everything following it is

placed always at the end of the query. The four keywords: from, in, where

and select, are completely enough to create a simple LINQ query. Here is an

example:

List<int> numbers = new List<int>() {

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
};

var evenNumbers =
 from num in numbers
 where num % 2 == 0

 select num;
foreach (var item in evenNumbers)
{

 Console.Write(item + " ");
}

The result is:

2 4 6 8 10

926 Fundamentals of Computer Programming with C#

The example above runs a query over a collection of integers called

numbers and filters only the even ones in a new collection. The query can be

read as follows: "for each number num from numbers check if it is multiple of

2, and if so, add it to the new collection".

Sorting Data with LINQ

Sorting with LINQ queries is done through the keyword orderby. The

conditions, used for sorting the elements, are placed after it. For each

condition the order of arrangement can be indicated: ascending (using the

keyword ascending) and descending (with the keyword descending), as by

default the elements are ordered in ascending order. If we want to sort an

array of strings by their length in descending order, for example, we can write

the following query:

string[] words = { "cherry", "apple", "blueberry" };
var wordsSortedByLength =
 from word in words

 orderby word.Length descending
 select word;
foreach (var word in wordsSortedByLength)

{
 Console.WriteLine(word);
}

The result is:

blueberry

cherry
apple

If no instruction for the order is given (i.e. the keyword orderby is missing

from the query) the items are printed in the way they would be processed, if

the foreach operator was used.

Grouping Results with LINQ

To group the results by some criteria the keyword group should be used. The

pattern is as follows:

group [variable name] by [grouping condition] into [group name]

The result of grouping is a new collection of a special type that can be

used further in the query. After the grouping, however, the query stops

working with its initial variable. This means that in the select statement, we

can use only the group. An example of grouping:

Chapter 22. Lambda Expressions and LINQ 927

int[] numbers =
 { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0, 10, 11, 12, 13 };
int divisor = 5;

var numberGroups =
 from number in numbers

 group number by number % divisor into group
 select new { Remainder = group.Key, Numbers = group };

foreach (var group in numberGroups)
{

 Console.WriteLine(

 "Numbers with a remainder of {0} when divided by {1}:",
 group.Remainder, divisor);
 foreach (var number in group.Numbers)

 {
 Console.WriteLine(number);
 }

}

The result is:

Numbers with a remainder of 0 when divided by 5:
5
0

10
Numbers with a remainder of 4 when divided by 5:
4

9
Numbers with a remainder of 1 when divided by 5:
1

6
11
Numbers with a remainder of 3 when divided by 5:

3
8
13

Numbers with a remainder of 2 when divided by 5:
7
2

12

As we can see from the example above, the numbers printed to the console

are grouped by their remainders of the division by 5. In the query, for each

number number % divisor is calculated, and for each different result a new

928 Fundamentals of Computer Programming with C#

group is formed. Further in the query, the select operator works on the list

of created groups, and for each group creates an anonymous type with two

properties: Remainder and Numbers. To the property Remainder the key of

the group is assigned (in our case the remainder of the division by the

divisor of the number). And to the property Numbers the collection group is

assigned, that contains all the elements in the group. Notice that select is

executed only over the list of groups. The variable number cannot be used

there. Further in the example of two nested foreach statements, the

remainders (the groups) and the numbers that have the remainder (located in

the group) are printed.

Joining Data with LINQ

The join statement is a bit more complicated than the other LINQ

statements. It joins collections by certain matching criteria and extracts the

needed data. Its syntax is as follows:

from [variable name from collection 1] in [collection 1] join

[variable name from collection 2] in [collection 2] on [part of
the compare condition from collection 1] equals [part of the
compare condition from collection 2]

Further in the query (e.g. in the select part), both, the name of the variable

from collection 1, and the name of the variable from collection 2, can be used.

Example:

public class Product
{

 public string Name { get; set; }
 public int CategoryID { get; set; }
}

public class Category
{

 public int ID { get; set; }
 public string Name { get; set; }
}

The code that illustrates how to use LINQ joins:

List<Category> categories = new List<Category>()

{
 new Category() { ID = 1, Name = "Fruit" },

 new Category() { ID = 2, Name = "Food" },

 new Category() { ID = 3, Name = "Shoe" },
 new Category() { ID = 4, Name = "Juice" },

Chapter 22. Lambda Expressions and LINQ 929

};
List<Product> products = new List<Product>()
{

 new Product() { Name = "Strawberry", CategoryID = 1 },
 new Product() { Name = "Banana", CategoryID = 1 },
 new Product() { Name = "Chicken meat", CategoryID = 2 },

 new Product() { Name = "Apple Juice", CategoryID = 4 },
 new Product() { Name = "Fish", CategoryID = 2 },
 new Product() { Name = "Orange Juice", CategoryID = 4 },

 new Product() { Name = "Sandal", CategoryID = 3 },
};

var productsWithCategories =

 from product in products
 join category in categories
 on product.CategoryID equals category.ID

 select new { Name = product.Name,
 Category = category.Name };
foreach (var item in productsWithCategories)

{
 Console.WriteLine(item);
}

The result is:

{ Name = Strawberry, Category = Fruit }

{ Name = Banana, Category = Fruit }
{ Name = Chicken meat, Category = Food }
{ Name = Apple Juice, Category = Juice }

{ Name = Fish, Category = Food }
{ Name = Orange Juice, Category = Juice }
{ Name = Sandal, Category = Shoe }

In the example above, we create two classes and an imaginary relationship

between them. To each product some category CategoryID (represented by

a number) corresponds, that matches the number ID from the class
Category in the collection categories. If we want to use this relation and to

create a new anonymous type, where to store the products and their names

and category, we can write the above LINQ query. It joins the collection of

elements of type Category with the one of type Product by the mentioned

criteria (match between ID from Category and CategoryID from Products).

In the select part of the query, we use both names category and product

to construct an anonymous type with the name of the product and the name

of the category.

930 Fundamentals of Computer Programming with C#

Nested LINQ Queries

LINQ also supports nested queries. For example our last query can be

written by nesting two queries in the following way (the result is exactly the

same as the one with join):

var productsWithCategories =

 from product in products
 select new {
 Name = product.Name,

 Category =

 (from category in categories
 where category.ID == product.CategoryID

 select category.Name).First()
 };

Since each query in LINQ returns a collection of items (irrespective of whether

the result from it is of 0, 1 or more elements), we need to use the extension

method First() over the result of the nested query. The method First()

returns the first element (in our case the only one) of the collection it is

applied on. In this way we get the name of the category only by its ID

number.

LINQ Performance

As a rule using LINQ and extension methods is slower than using direct

operations over a collection of elements, so beware of using LINQ when

processing large collections or the performance is critical.

Let’s compare the speed of adding 50,000,000 elements to a list through

extension methods and directly with a for-loop:

List<int> l1 = new List<int>();

DateTime startTime = DateTime.Now;
l1.AddRange(Enumerable.Range(1, 50000000));

Console.WriteLine("Ext.method:\t{0}", DateTime.Now - startTime);

startTime = DateTime.Now;

List<int> l2 = new List<int>();
for (int i = 0; i < 50000000; i++) l2.Add(i);
Console.WriteLine("For-loop:\t{0}", DateTime.Now - startTime);

The result might be as follows (depends on the computer’s CPU speed):

Ext.method: 00:00:01.6430939

For-loop: 00:00:00.9120522

Chapter 22. Lambda Expressions and LINQ 931

LINQ technology and extension methods work through the concept of

expression trees. Each LINQ query is translated by the compiler to an

expression tree and is executed when its results are actually accessed (not

earlier). For example let’s consider the following code:

List<int> list = new List<int>();
list.AddRange(Enumerable.Range(1, 100000));

DateTime start = DateTime.Now;
for (int i = 0; i < 10000; i++)
{

 var elements = list.Where(e => e > 20000);
}
Console.WriteLine("No execution:\t{0}", DateTime.Now - start);

start = DateTime.Now;
for (int i = 0; i < 10000; i++)

{
 var element = list.Where(e => e > 20000).First();
}

Console.WriteLine("Execution:\t{0}", DateTime.Now - start);

The result might be as follows (depends on the computer’s CPU speed):

No execution: 00:00:00.0070004
Execution: 00:00:02.7231558

This shows that if we call a .Whereſ…ƀ filter (or where clause in LINQ) it is not

actually executed until its result is actually needed. The elements get filtered

on demand, at the time they are really required. In our case this is when we

invoke First() method. Moreover, if we get the first element of a sequence,

the rest elements are not processes until needed. Thus if we use change the

filtering lambda function from “e => e > 20000” to “e => e > 500000”, the

filtering becomes times slower because more elements are processed until the

first matching the filtering condition is found:

No execution: 00:00:00.0060004

Execution: 00:00:06.3663641

Standard .NET Framework collection classes like List<T>, HashSet<T> and

Dictionary<K,V> are optimized to work fast with LINQ. Most operations with

LINQ work almost as fast as if we run them directly. Let’s check this example:

HashSet<Guid> set = new HashSet<Guid>();

for (int i = 0; i < 50000; i++)
{

932 Fundamentals of Computer Programming with C#

 set.Add(Guid.NewGuid()); // Add random GUID
}

Guid keyForSearching = new Guid();
DateTime start = DateTime.Now;
for (int i = 0; i < 50000; i++)

{
 // дse Hashвet.Containsſ…ƀ
 bool found = set.Contains(keyForSearching);

}
Console.WriteLine("HashSet: {0}", DateTime.Now - start);

start = DateTime.Now;
for (int i = 0; i < 50000; i++)
{

 // дse IEnumerable<Guid>.Containsſ…ƀ extension method
 bool found = set.Contains<Guid>(keyForSearching);
}

Console.WriteLine("Contains: {0}", DateTime.Now - start);

start = DateTime.Now;

for (int i = 0; i < 50000; i++)
{
 // дse IEnumerable<Guid>.Whereſ…ƀ extension method
 bool found = set.Where(g => g==keyForSearching).Count() > 0;
}
Console.WriteLine("Where: {0}", DateTime.Now - start);

The result is as follows (though it depends on the computer’s CPU speed):

HashSet: 00:00:00.0030002

Contains: 00:00:00.0040003
Where: 00:02:49.9717218

Seems like .NET Framework takes into account the capability to search in

constant time O(1) in a HashSet<T>, so searching though the native method

Containsſ…ƀ and though the extension methods IEnumerable.Containsſ…ƀ

both run in time O(1). By contrast, the IEnumerable.Whereſ…ƀ method is

dramatically slower and runs in linear time O(n). This is expected, because

the Whereſ…ƀ method checks certain condition for each element in a collection

and it is expected to process all elements one by one. By contrast the

Containsſ…ƀ method just searches for single element which is fast operation.

In case you do not remember about the asymptotic notation O(1) and O(n),

please check the chapter “Data Structures and Algorithm Complexity”.

Chapter 22. Lambda Expressions and LINQ 933

In the above example we use the system structure Guid. This is a global

unique identifier often used in computer technologies to identify an object. It

may look like the following: 8668f585-faf8-4685-8025-6a8d1d2aba0a. If

you want to generate a global unique (world-wide) identifier, you might

benefit from the method Guid.NewGuid(), like we do in the code above.

Exercises

1. Implement an extension method Substring(int index, int length) for

the class StringBuilder that returns a new StringBuilder and has the

same functionality as the method Substringſ…ƀ of the class String.

2. Implement the following extension methods for the classes, implementing

the interface IEnumerable<T>: Sum(), Min(), Max(), Average().

3. Write a class Student with the following properties: first name, last name

and age. Write a method that for a given array of students finds those,

whose first name is before their last one in alphabetical order. Use LINQ.

4. Create a LINQ query that finds the first and the last name of all students,

aged between 18 and 24 years including. Use the class Student from the

previous exercise.

5. By using the extension methods OrderByſ…ƀ and ThenByſ…ƀ with lambda

expression, sort a list of students by their first and last name in

descending order. Rewrite the same functionality using a LINQ query.

6. Write a program that prints to the console all numbers from a given array

(or list), that are multiples of 7 and 3 at the same time. Use the built-

in extension methods with lambda expressions and then rewrite the

same using a LINQ query.

7. Write an extension method for the class String that capitalizes all

letters, which are the beginning of a word in a sentence in English. For

example: "this iS a Sample sentence." should be converted to "This
Is A Sample Sentence.".

8. Create a hash-table to hold a phone book: a set of person names and

their phone numbers (e.g. Kate Wilson  +3592981981, +3598862536;

Alex & Co.  1-800-ALEX; Steve Milton  +496023456). Fill enough

random data (e.g. 50,000 key-value pairs). Measure how much time it

takes to perform searching by key in the hash-table using its native search

capabilities, using the extension methods IEnumerable.Containsſ…ƀ and

IEnumerable.Whereſ…ƀ. Can you explain the difference?

Solutions and Guidelines

1. Follow the syntax explained in the section “Extension Methods”. You

may create a new StringBuilder and to write in it all the characters with

indices, starting from index and with length length, from the object that

the extension method will work on.

934 Fundamentals of Computer Programming with C#

2. For generic implementation of the Min() and Max() methods for any

generic type T you can add a restriction to the passed type T to be

comparable, i.e. you should have something like this:

public static T Min<T>(this IEnumerable<T> elements)
 where T : IComparable<T>
{ … }

Since not all data types have predefined operators + and /, it will not be

possible to apply the functions Sum() and Average() to all types directly.

There are no interfaces ISummable<T> and IDividable<T> in .NET. One

way to work around this problem is to convert all input objects to

decimal and then to calculate sum / average and return decimal as result.

For the conversion you can use the static method Convert.ToDecimalſ…ƀ.

Another interesting approach is to use the dynamic data type in C# to

hold the arguments and results and to execute the operations over them at

runtime (due to the dynamic evaluation capabilities in C#):

public static dynamic Min<T>(this IEnumerable<T> elements)
{ … }

This is easier to implement and works better but could have performance

issues and some special cases to be handled.

3. Review the keywords from, where and select from the "LINQ Queries"

section in this chapter.

4. Write a LINQ query to select the described students in an anonymous

type that contains only two properties – FirstName and LastName.

5. For the LINQ query use from, orderby, descending and select. For the

implementation with the lambda expressions, you can use the methods

OrderByDescendingſ…ƀ and ThenByDescendingſ…ƀ.

6. It is enough to check if the numbers are multiples of 21, instead of writing

two where conditions.

7. Use the method ToTitleCaseſ…ƀ of the property TextInfo in the culture

en-US in the following way:

new CultureInfo("en-US", false).TextInfo.ToTitleCase(text);

8. See the examples at the end of the section “LINQ Performance”. You can

use Dictionary<string, List<string>> to hold the phone book. You

may explain the difference in the execution speed by trying to explain

how searching works internally and by the assumption that searching in a

hash-table takes time O(1) and searching in a collection element by

element runs in linear time O(n).

